Abstract

The influence of nickel particle size in the range of 1.6–7.3nm on catalyst performance in low temperature CO2 reforming of methane reaction has been investigated using well-defined catalysts based on a neutral silica support. XAS and XPS studies indicated a reduction degree greater than 90%. The intrinsic Ni/SiO2 performances were found to be independent of nickel particle size in dry reforming at 773K using a CH4/CO2 ratio of 1.3 at 1atm, both at an early stage and in steady state conditions. The H2/CO ratio was also found to be structure in sensitive but is controlled by thermodynamics through the faster reverse water gas shift reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.