Abstract

Samples were collected monthly from January to December in 2010, and daily observations were made during the water-sediment regulation event in June-July 2010. Sequential extractions were applied to determine the forms of P in different particle-size fractions and to assess the potential bioavailability of particulate phosphorus (PP). The results indicated that exchangeable phosphorus, organic phosphorus, authigenic phosphorus, and refractory phosphorus increased with the decreasing of particulate size; conversely, detrital phosphorus decreased with the decreasing of particulate size. The content of bioavailable particulate phosphorus (BAPP) varied greatly in different sizes of particles. In general, the smaller the particle size, the higher the content of bioavailable phosphorus and its proportion in total phosphorous was found in these particles. Hydrological forcing controlled the variability in the major P phases found in the suspended sediments via changes in the sources and the particle grain-size distribution. The variation of particle sizes can be attributed also to different total suspended sediment (TSS) sources. Water-sediment regulation (WSR) mobilized only particulate matter from the riverbed, while during the rainstorm soil erosion and runoff were the main source. The BAPP fluxes associated with the "truly suspended" fraction was approximately 200 times larger than the dissolved inorganic phosphorus (DIP) flux. Thus, the transfer of fine particles to the open sea is most probably accompanied by BAPP release to the DIP and can support greater primary and secondary production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.