Abstract

The electrochemical performance of carbon-coated nanocrystalline LiFePO 4 prepared by a freeze-drying method is examined. This method is based on the thermal decomposition of homogeneous phosphate-formate precursors. Structural and morphological characterization of LiFePO 4 is carried out by powder XRD, BET measurements, SEM and XPS analyses. The electrochemical behaviour is tested in model lithium cells using galvanostatic mode. By changing the solution concentration, the freeze-drying method allows preparing LiFePO 4 with mean particle sizes between 60 and 100 nm and different particle size distributions. The content of carbon appearing mainly on the particle surface depends on both the solution concentration and the annealing temperature. The effect of particle size distribution on the voltage profile of LiFePO 4 is also demonstrated. The specific capacity is mainly determined by the amount of carbon deposited on the particle surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.