Abstract

A systematic study of the luminescence properties of monodisperse β-NaYF4: 20% Yb3+, 2% Er3+ upconversion nanoparticles (UCNPs) with sizes ranging from 12–43 nm is presented utilizing steady-state and time-resolved fluorometry. Special emphasis was dedicated to the absolute quantification of size- and environment-induced quenching of upconversion luminescence (UCL) by high-energy O–H and C–H vibrations from solvent and ligand molecules at different excitation power densities (P). In this context, the still-debated population pathways of the 4F9/2 energy level of Er3+ were examined. Our results highlight the potential of particle size and P value for color tuning based on the pronounced near-infrared emission of 12 nm UCNPs, which outweighs the red Er3+ emission under “strongly quenched” conditions and accounts for over 50% of total UCL in water. Because current rate equation models do not include such emissions, the suitability of these models for accurately simulating all (de)population pathways of small UCNPs must be critically assessed. Furthermore, we postulate population pathways for the 4F9/2 energy level of Er3+, which correlate with the size-, environment-, and P-dependent quenching states of the higher Er3+ energy levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.