Abstract

It has long been known that the electrophoretic velocity of a charged particle is independent of its size under the thin-Debye-layer limit. This so-called Smoluchowski velocity is, however, valid only for Newtonian fluids. A couple of recent theoretical studies predict the rheology-induced particle size dependence of electrophoresis in non-Newtonian fluids. This work presents the first experimental demonstration of such dependence in viscoelastic poly(ethylene oxide) (PEO) solutions. Three different-sized particles are observed to travel at the same electrophoretic velocity in a Newtonian buffer through a rectangular microchannel. In contrast, their measured electrophoretic velocities in the PEO solution exhibit an increasing trend for larger particles, which is consistent with theoretical prediction. This particle size dependence is found to grow with an increasing concentration or length of the PEO polymer. Both trends are attributed to enhanced fluid elasticity, as characterized by the increasing elasticity number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.