Abstract

Fatigue crack propagation (FCP) and fracture mechanisms have been studied for two orientations in powder metallurgy 2024 aluminium alloy matrix composites reinforced with three different sizes of silicon carbide particles. Particular attention has been paid to make a better understanding for the mechanistic role of particle size. The FCP rates of the composites decreased with increasing particle size regardless of orientation and were slightly faster in the FCP direction parallel to the extrusion direction. After allowing for crack closure, the differences in FCP rate among the composites and between two orientations were significantly diminished, but the composites showed lower FCP rates than the corresponding unreinforced alloy. Fracture surface roughness was found to be more remarkable with increasing particle size and in the FCP direction perpendicular to the extrusion direction. Taking into account the difference in the modulus of elasticity in addition to crack closure, the differences in FCP rate between the unreinforced alloy and the composites were almost eliminated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call