Abstract
The catalytic particle size dependence of chemical vapor deposition growth of multiwall carbon nanotubes was systematically investigated using two different molecules, C2H2 and C60, as carbon feedstock gases. In the particle size range between 25 and 500 nm, the use of C2H2 leads exclusively to growth of carbon nanotubes. The nanotube diameters increase with increasing catalytic particle sizes but do not scale 1:1. In contrast, nanotube formation from C60 is observed only if the particle sizes are sufficiently small with an optimum between 20 and 30 nm. For catalyst samples with considerably larger diameters, C60 is transformed into a nontubular deposit. A growth model is given that explains the different behavior.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.