Abstract

Particle size and shape and their distribution directly influence a variety of end-use material properties related to packing, mixing, and transport of powders, solutions, and suspensions. Many of the techniques currently employed for particle size characterization have found limited applicability for broadly polydisperse and/or nonspherical particles. Here, we introduce a quadruple-detector hydrodynamic chromatography (HDC) method utilizing static multiangle light scattering (MALS), quasi-elastic light scattering (QELS), differential viscometry (VISC), and differential refractometry (DRI), and apply the technique to characterizing a series of solid and hollow polystyrene latexes with diameters in the approximate range of 40-400 nm. Using HDC/MALS/QELS/VISC/DRI, we were able to determine a multiplicity of size parameters and their polydispersity and to monitor the size of the particles across the elution profile of each sample. Using self-similarity scaling relationships between the molar mass and the various particle radii, we were also able to ascertain the shape of the latexes and the shape constancy as a function of particle size. The particle shape for each latex was confirmed by the dimensionless ratio rho identical with R (G,z )/R (H,z ) which, in addition, provided information on the structure (compactness) of the latexes as a function of particle size. Solid and hollow polystyrene latex samples were also differentiable using these methods. Extension of this method to nonspherical, fractal objects should be possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call