Abstract

During a hypothetical severe accident in a nuclear reactor, a steam explosion might occur when molten corium interacts with water. The strength of a steam explosion affects the integrity of the containment of a nuclear reactor and is highly dependant on the characteristics of the melt-water-steam mixture. Since a break-up and fragmentation process during a pre-mixing are important mechanisms for a steam explosion behavior and affect the debris size distribution, the particle size characteristics of quenched corium have been investigated. For several years, series of experiments have been performed using prototypical corium in the TROI test facility with a high frequency induction heating using cold crucible technology. The molten corium was discharged into the cold water and the quenched debris particles were collected, sieved and examined for the effect of a size distribution on a steam explosion. The small corium droplets do not seem to contribute to a steam explosion owing to solidification at an early stage before the explosion but the large droplets contribute to it owing to their liquid state. It was also shown that single oxides and binary oxides with an eutectic composition (UO2/ZrO2 = 70/30 at weight percentage) led to steam explosions, but a binary oxide with a non-eutectic one did not. The mass mean diameters of the debris of the steam explosive composition was less than that of the non-steam explosive composition. Zirconia was the most energetic steam-explosive material in these tests, and an eutectic composition of corium also lead to a steam explosion, but a non-eutectic composition corium hardly led to a steam explosion. The particle sizes of the molten corium participating in a steam explosion were shown to be mainly 3–6 mm depending on the material and composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call