Abstract

The use of a forward scattering Laser Anemometer system for the measurement of particle diameters larger than the fringe spacing is investigated. A systematic calibration experiment demonstrates a direct relationship between signal amplitude and particle diameter for transparent particles between 30 microns and 240 microns in diameter. A light scattering analysis confirms these measurements and indicates how the range of particles which can be measured using the peak (mean) signal depends on the optical arrangement and particle properties. On the basis of this work a real time Laser Anemometer signal processor is modified so that the peak of the mean of each signal can be measured. A method of correcting data for the effect of particles which do not go through the center of the measurement volume is derived. Good agreement is found between particle size distributions measured in sprays by using the Laser Anemometer and size distributions measured by collecting the particles on a slide and using an image analysis computer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.