Abstract

AbstractWater storage and flow in soils are highly dependent on soil structure, which strongly determines soil porosity. However pore size distribution can be derived from soil water retention curve (SWRC). Structural characteristics of cultivated arable fields (693 soil profiles, 1773 samples) and soils covered by treated forest stands (137 soil profiles, 405 samples) were selected from the MARTHA Hungarian soil physical database, and evaluated for expressing organic matter effects on soil structure and water retention. For this purpose the normalized pore size distribution curves were determined for the selected soils, plus the modal suction (MS) corresponding to the most frequent pore size class of the soil. Skewness of soils’ pore size distribution curves are found different. The quasi-normal distribution of sandy soils are transformed into distorted in clayey soils. A general growing trend of MS with the ever finer soil texture was shown. Sandy soils have the lowest average MS values, i.e. the highest most frequent equivalent pore diameter. Silty clay and clay soil textures are characterized by the highest MS values. A slight effect of land use and organic matter content is also observable in different MS values of soils under forest vegetation (’forest’) and cultivated arable land (‘plough fields’). MS values of the two land uses were compared statistically. The results of the analyses show that certain soil group’s MS are significantly different under forest vegetation and cultivation. However this difference can be explained only partly and indirectly by the organic matter of different plant coverage in the land use types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.