Abstract
Herein, La2Zr2O7:5% Eu3+ nanoparticles (NPs) with different sizes have been synthesized for the first time through a modified facile molten salt process using a single‐source complex precursor of La(OH)3·ZrO(OH)2:Eu(OH)3·nH2O. It was found that the concentration of the added ammonia to co‐precipitate the corresponding metallic ions to form the precursor can influence the final particle size of the fluorite La2Zr2O7:5%Eu3+ NPs. Furthermore, the crystal phase of the La2Zr2O7:5%Eu3+ NPs was transferred from fluorite to pyrochlore after thermal treatment at 1000°C. The relationship between photoluminescence (PL), quantum yield (QY), particles size and crystal phase has been further investigated through fluorescence decay, site symmetry, and Judd–Ofelt (J–O) analysis. Specifically, PLQY and lifetime increase with increasing particle size of the fluorite La2Zr2O7:5%Eu3+ NPs. Additionally, crystal phase transfer from fluorite to pyrochlore resulted in large PLQY decrease and moderate lifetime increase in the La2Zr2O7:5%Eu3+ NPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.