Abstract

Porous silica and hybrid silica chromatographic support particles having particle diameters ranging approximately from 1 μm to 15 μm have been characterized by flow/hyperlayer field-flow fractionation (FFF). The particle size accuracy has been improved significantly in this work by a second-order polynomial calibration. Very good agreement between the FFF data and scanning electron microscopic (SEM) results has been achieved. The effects of particle porosity, pore sizes, and particle sizes on the particle size accuracy in electrical sensing zone (ESZ) analyses have been discussed. It has been demonstrated by computer simulation and experimental measurements that false peaks can be generated in certain particle size regions when the static light scattering (SLS) technique is applied to tightly distributed spherical chromatographic support particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.