Abstract

Electrostatic properties of density gradient drift waves (the universal mode) in a sheared magnetic field are studied using a two-and-one-half dimensional (2 1/2 -D) particle code. For the case of a single rational surface, the drift waves are found to be stable with an eigenmode structure that matches the linear theoretical prediction as long as the ion resonance layer is well within the system. This applies to both even and odd parity modes with respect to the rational surface. The dependence on various parameters such as the shear length is examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.