Abstract

Particle separation is an important topic in microfluidic field and has recently gained significant attention in sample preparations for biological and chemical studies. In this paper, a novel particle separation method was proposed. In this method, the particles were separated by the air-liquid interface in a microchannel. The motion of the air-liquid interface was controlled with a syringe pump. Depending on the air-liquid interface speed, the liquid film thickness and the viscous force on particles were changed and the particles were separated by sizes. We observed the separation of 1.01 μm particles from the larger particles when the air-liquid interface speed was less than 11 μm/s, and the separation of both 1.01 μm and 5.09 μm particles from the larger particles when the interface speed was between 11 μm/s and 120 μm/s. When the speed was higher than 120 μm/s, the drag force of the liquid flow generated by the advancing interface on particles was so strong that the flow removed all particles off from the bottom channel wall and there were no particles left behind the advancing interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.