Abstract

The role of particle separation on the performance of ozone-biological activated carbon (BAC) was evaluated based on the analyses of the fate of organic substances in the process. Pilot plant studies were carried out using eutrophic lake water as raw water. The ozonation not only converted refractory organic matter into biodegradable matter but also particulate organic carbon (POC) into dissolved organic carbon (DOC). Total decrease in adsorbable and non biodegradable DOC fraction (ADOC) after ozonation was only 16% of the influent into the biofiltration process followed by ozonation. However, the ozone-BAC process before membrane separation could reduce organic loading to membrane system. The smaller loading to microfiltration will result in long intervals of back washing and less frequent membrane fouling. Membrane separation before ozonation removed not only POC but also a part of DOC and could prevent dissolution of POC during ozonation. The decreases in ADOC by membrane and ozonation were 20% and 37% of the influent ADOC, respectively. The total decrease in ADOC for membrane process followed by ozonation was 57%. The separation of particulate matter will decrease loading of ADOC onto BAC significantly and, therefore, will extend service life of BAC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call