Abstract

The diffusion and chemical reactions inside the catalyst particles and the heterogeneous flow structure in the computational cells are key factors to affect the accuracy of the coarse-grid simulation in circulating fluidized bed (CFB) methanation reactors. In this work, a particle-scale model is developed to calculate the effective reaction rate considering the transient diffusion and chemical reactions in the particle scale, i.e., the scale of the single catalyst particle. A modified sub-grid drag model is proposed to consider the effects of the meso-scale and chemical reactions on the heterogeneous gas-solid interaction, where the meso-scale is between the single particle and the whole reactor and featured with the particle cluster. Subsequently, a coupled model is developed by integrating the particle-scale and modified sub-grid drag models into CFD. Moreover, the coupled model is validated to achieve accurate predictions on the CO methanation process in a CFB riser. Notably, the coupled model can be performed with a coarse grid (∼58 times particle diameter) and a large time step (0.005 s) to accelerate the simulation. By simply changing the reaction kinetics, different gas-solid catalytic reaction systems can be simulated by using the coupled model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call