Abstract

Particle Image Velocimetry (PIV) experiments on turbulent solid‐liquid stirred tank flow with careful refractive index matching of the two phases have been performed. The spatial resolution of the PIV data is finer than the size of the spherical, uniformly sized solid particles, thereby providing insight in the flow around individual particles. The impeller is a down‐pumping pitch‐blade turbine. The impeller‐based Reynolds number has been fixed to Re = 104. Overall solids volume fractions up to 8% have been investigated. The PIV experiments are impeller‐angle resolved, that is, conditioned on the angular position of the impeller. The two‐phase systems are in partially suspended states with an inhomogeneous distribution of solids: high solids loadings near the bottom and near the outer walls of the tank, much less solids in the bulk of the tank. The liquid velocity fields show very strong phase coupling effects with the particles increasingly attenuating the overall circulation patterns as well as the liquid velocity fluctuation levels when the solids volume fraction is increased. © 2017 American Institute of Chemical Engineers AIChE J, 63: 389–402, 2018

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call