Abstract

In this study, a conventional nano-grained tungsten carbide (WC) powder was mixed with 12wt.% of a submicron cobalt (Co) powder in a ball mill for varying milling time periods, producing a homogeneous powder mixture which can be used to sinter near-nanocrystalline cemented carbides using short-duration sintering processes. Parameters of the wet milling process were adapted in order to maximise the mixing effect on the one hand, and to avoid particle growth during the milling process on the other. Surface analysis and microscopic examination of the milled powders showed a milling-time-dependent evolution of particle size and surface roughness. X-ray diffraction (XRD) investigation indicated a decrease of the crystallite size of WC in combination with an increase in defect density, as well as a strong increase in stacking faults in the Co. The main action of the milling mechanism is the fracturing of the WC particles. Co is distributed consistently around the WC particles. The preparation method used is a useful technique to prepare homogeneous powder mixtures of WC–Co with particle sizes below 200nm on a laboratory scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call