Abstract
Basing on the results obtained in a our previous study on Gravity's Rainbow, we determine the quantum corrections to the space-time metric for the Schwarzschild and the de Sitter background, respectively. We analyze how quantum fluctuations alter these metrics inducing modifications on the propagation of test particles. Significantly enough we find that quantum corrections can become relevant not only for particles approaching the Planck energy but, due to the one loop contribution, even for low-energy particles as far as Planckian length scales are considered. We briefly compare our results with others obtained in similar studies and with the recent experimental OPERA announcement of superluminal neutrino propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.