Abstract

Understanding large-scale interacting quantum matter requires dealing with the huge number of quanta that are produced by scattering even a few particles against a complex quantum object. Prominent examples are found from high energy cosmic ray showers to the optical or electrical driving of degenerate Fermi gases. We tackle this challenge in the context of many-body quantum optics, as motivated by the recent developments of circuit quantum electrodynamics at ultrastrong coupling. The issue of particle production is addressed quantitatively with a simple yet powerful concept rooted in the quantum superposition principle. This key idea is illustrated by the study of multi-photon emission from a single two-level artificial atom coupled to a high impedance waveguide. We find surprisingly that the off-resonant inelastic emission lineshape is dominated by broadband particle production, due to the large phase space associated with contributions that do not conserve the number of excitations. Such frequency conversion processes produce striking signatures in time correlation measurements, which can be tested experimentally in quantum waveguides. These ideas open new directions for the simulation of a variety of physical systems, from polaron dynamics in solids to complex superconducting quantum architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.