Abstract
The problems studied in this paper are associated with a critical branching particle system in [Formula: see text], where the particle motion is described by a Lévy process. We define the intersection local time (ILT) of two independent trees, i.e. two independent particle systems, each starting from a single particle and we give sufficient conditions for its existence. The [Formula: see text]-valued density process arises as the high density limit of a "charged" particle system, where the initial positions of particles are given by a Poisson random measure. We express the self-intersection local time of this density process by means of ILTs of pairs of trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Infinite Dimensional Analysis, Quantum Probability and Related Topics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.