Abstract

Particle separation from gases is an important unit operation in manifold industrial applications, such as those conducted in environmental protection. For analysis of particle penetration and separation in fiber filters, standard dust particles (Al2O3) were loaded in the gas flow of a filter test facility and deposited within new and uncharged fiber filters. The loaded filters were analyzed by micro-computer tomography and scanning electron microscopy. Three-dimensional tomograms of the samples show an exponential decay of the penetration depth of the particles. This dependency is confirmed by simulations conducted using the discrete element method coupled with computational fluid dynamics within unloaded and loaded fiber structures. Microscale processes of particle separation at the fibers as well as the filtration efficiency and time-dependent filtering process are derived from the simulations. Local particle clustering in the filter medium and partial filter clogging are thus identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.