Abstract

Many microorganisms use cilia to propel themselves in low Reynolds number ( $Re$ ) environments. In this work, we study the dynamics of a composite cilium consisting of an elastic filament and a spherical particle attached at the filament tip driven by an external time-periodic force acting on the particle. The elastic filament is modelled numerically using a slender body theory with hydrodynamic interactions. When tilted at a large angle from the normal direction of the wall, the filament buckles, and the induced velocity field by the cilium shows a large net flux. By varying the tilt angle or the force amplitude, the particle trajectory and the net flux display abrupt changes along with a reversal of the buckling direction. We further demonstrate through a segmental model that the abrupt changes arise from the deviation of the cilium orientation at the start of the recovery stroke from the natural orientation. Our results suggest a simple approach to engineering particle motions and designing artificial cilia for fluid pumping in low $Re$ environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call