Abstract

The growth of particle size has been measured in a low-pressure argon-silane plasma using high-resolution transmission electronic microscopy. The results show that formation and growth of dust particles is an homogeneous process; the first generation size distribution is monodispersed; and the growth kinetics reveals a three-step process from molecular ions to large particles. Together with measurements of particle concentration obtained by laser light scattering, these measurements give a clear indication that the growth proceeds through three successive steps: (i) 'rapid' formation of crystalline clusters (as shown by dark-field high-resolution transmission electron microscopy) with concentrations of up to 1010 cm-3; (ii) formation of aggregates, of diameters up to 50 nm, by coagulation (during coagulation the particle concentration decreases dramatically); and (iii) growth of the particles with a constant concentration by surface deposition of SiHx radicals, whilst the numerical density remains constant. Laser-induced particle explosive evaporation has been performed using a XeCl (308 nm) laser. This experiment allowed detection of nanocrystallites and also the beginning of their coagulation and gave clear evidence of the temperature effect on particle formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.