Abstract

The motion of a particle which is constrained by a guide potential to move on a curve is studied in the framework of the Generator Coordinate Method (GCM). In the limit of narrow guide potentials a differential equation for the wave function of the constrained motion is obtained which differs from the corresponding Schrodinger equation by an additional potential. This additional potential is due to the embedding of the curve in the space and depends on the form of the guide potential and on the curvature of the curve. Nonadiabatic transitions in the constrained motion are possible for finite widths of the guide potential. The coupling terms are given explicitly and it is shown that an adiabatic limit exists. Since the GCM can equally well describe the collective motion of nuclei, some insight into the more complicated problem of collective motion is obtained from its analogies to the studied problem of constrained particle motion: The collective motion of a nucleus can be considered as the motion of a particle with variable mass along a curve in a guide potential which is given by the interaction potential between the nucleons. It is shown that Schrodinger's quantized kinetic energy is correctly used in the cranking model and that the additional potential terms mentioned above are included there by the definition of the collective potential energy. Approximations to the idealized GCM used here are discussed and the connection with the method of Born, Oppenheimer and Villars is indicated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call