Abstract

Suspensions comprised of neutrally buoyant spheres in Newtonian fluids undergoing creeping flow in the annular region between two rotating, coaxial cylinders (a wide-gap Couette) display a bulk migration of particles towards regions of lower shear rate. A series of experiments are performed to characterize this particle migration, including the influence of particle size, surface roughness, and volume fraction. Little, if any, effect of particle surface roughness is observed. An existing continuum diffusive-flux model [Phillips et al. (1992)] for predicting particle concentration profiles in monomodal suspensions is evaluated using the current series of experimental data. This model predicts a dependence of the migration rate on the square of the suspended particles’ radius, a2; whereas the present experiments indicate that systems with average particle volume fractions of 50% display a rate that scales with a3. Previous use of the diffusive-flux model has assumed constant values for diffusion coefficients which serve as tuning parameters in the phenomenological equation. Here the experimental data are used to investigate variations of the model in which the diffusion coefficients depend upon either the local or global particle volume fraction. For initially uniform suspensions, the coefficients are found to be best modeled as functions of the local particle volume fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.