Abstract
We present a particle-level model for calculating the radio scatter of incident RF radiation from the plasma formed in the wake of a particle shower. We incorporate this model into a software module (“RadioScatter”), which calculates the collective scattered signal using the individual particle equations of motion, accounting for plasma effects, transmitter and receiver geometries, refraction at boundaries, and antenna gain patterns. We find appreciable collective scattering amplitudes with coherent phase for a range of geometries, with high geometric and volumetric acceptance. Details of the calculation are discussed, as well as the implementation of RadioScatter into GEANT4. A laboratory test of our model, currently scheduled at SLAC in 2018, with the goal of measuring the time-dependent characteristics of the reflecting plasma, is also described. Prospects for a future in-ice, high-energy neutrino detector, along with comparison to current detection strategies, are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.