Abstract

Light propagating down a cone and/or impinging on a structured surface in the short-pulse, high intensity laser-matter interaction which generates the hot energetic electrons essential to the fast ignition scheme is studied with particle-in-cell simulations. These more complex geometries lead to both increased laser light absorption and higher temperatures of the resulting energetic electrons as compared to simple slab interactions. But the relatively wide angular distributions of the energetic electrons observed in the simulations needs to be taken into account in fast ignition designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.