Abstract

A high-order direct numerical simulation code (The Pencil Code) has been used together with the immersed boundary method on a Cartesian grid to simulate particle impaction on a cylinder in a crossflow. The direct numerical scheme concerns only the fluid flow, into which the particles are subsequently coupled through a one-way drag-coefficient law. The immersed boundary method is extended to work with high-order discretization, and the particle impaction efficiency has been measured for Stokes numbers ranging from 0.001 to 40 for a range of different Reynolds numbers. Three modes of impaction on the front side of the cylinder are identified, where, for the large-Stokes-number mode (St > 0.3), an alternative to the traditional Stokes number is presented that provides better scaling. The intermediate impaction mode has a very steep decrease in impaction efficiency as the Stokes number is decreased, and this is identified as the range of Stokes numbers where the viscous boundary layer starts to take effect. The third mode of front-side impaction is for the very small particles with St < 0.1 exactly following the flow but impacting on the cylinder due to their finite radii. There will not be any capture on the front side of the cylinder for impact angles larger than ~56° for this mode. Finally, it is found that the particle impaction on the back side of the cylinder is strongly dependent on the flow Reynolds number, where large Reynolds numbers lead to larger impaction efficiencies. The upper limiting Stokes number of back-side impaction is around 0.13, apparently irrespective of the Reynolds number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call