Abstract
In many liquid food processing applications using high-pressure homogenizers (HPHs), particles impact with the solid surfaces of the homogenization device. This may lead to costly wear. For some applications, impact is also postulated to control the desired cell disruption. This contribution uses computational fluid dynamics to study impact of particles on solid surfaces in HPHs, as a step towards design optimization. Effects of particle diameter, density, homogenizing pressure, and impact distance are studied. Results show impacts both on the forcer and on the impingement ring. Few particles hit the forcer, at low velocities and with low angles (‘bracing impacts’). More particles hit the impact ring. These impacts are with higher velocities and typically occur head-on. The effect of both homogenizing pressure and impact ring distance scales according to a previously suggested stagnation pressure model. Results are discussed in the light of wear and cell disruption observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.