Abstract
Particle impact damping (PID) is a technique of achieving high structural damping with small metallic particles embedded within a cavity that is attached to vibrating structure. This is a highly non-linear damping mechanism in which energy dissipation is primarily related to friction and impact phenomena. In this work a simple yet detailed analytical model is presented to study PID in two dimensions under transient vibrations. Normal as well as oblique impacts are considered. The effect of cavity size and acceleration amplitude on PID is studied and the results are supported by experiments. Fairly good agreement is found between the theory and the experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.