Abstract

An exact particle–hole transformation is discovered in a local-moment model for a single layer of heavily electron-doped FeSe. The model harbors hidden magnetic order between the iron d x z and d y z orbitals at the wavenumber ( π , π ) . It potentially is tied to the magnetic resonances about the very same Néel ordering vector that have been recently discovered in intercalated FeSe. Upon electron doping, the local-moment model successfully accounts for the electron-pocket Fermi surfaces observed experimentally at the corner of the two-iron Brillouin zone in electron-doped FeSe, as well as for isotropic Cooper pairs. Application of the particle–hole transformation predicts a surface-layer iron-based superconductor at strong hole doping that exhibits high T c, and that shows hole-type Fermi-surface pockets at the center of the two-iron Brillouin zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.