Abstract

A new sequence of gamma rays with energies of 572, 499, 585, and 674 keV has been identified in 67Cu populating the 7/2− level at 2362 keV. Owing to the strong population of the 2362-keV level via an ℓ = 3 proton pickup reaction, that level is assigned to be an f7/2−1 2-particle-1-hole "intruder" proton configuration, and the new levels are found to form a sequence consistent with intruder sequences in the adjacent odd-mass Cu isotopes and in the odd-mass Sb isotopes. The changing position of the intruder sequence in the odd-mass Cu isotopes is discussed and related to the onset of collectivity associated with the presence of g9/2 neutrons beyond N = 40. The increase in collectivity is also discussed for a number of isotonic and isotopic chains as more protons or neutrons, respectively, are added beyond an oscillator shell boundary. For most of these systems, the ℓ −1/2 levels show a systematic "hockey-stick-like" behaviour with a sharp decrease in energy with the addition of the first protons or neutrons, owing to both the added collectivity and the tensor interaction, and then a lower slope when collectivity changes are diminished and only the tensor interaction is influencing the changes in level positions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.