Abstract

Abstract This study describes an approach for combining CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations to investigate the microphysical processes of warm clouds on the global scale. MODIS column optical thickness is vertically distributed between the cloud top and cloud bottom according to adiabatic and condensational growth assumptions and used as a vertical coordinate system to analyze profiles of CloudSat-observed radar reflectivity. The reflectivity profiles thus rescaled as a function of the in-cloud optical depth clearly depict how the cloud-to-rain particle growth processes take place within the cloud layer and how these processes vary systematically with variations in MODIS-derived effective particle radius. It is also found that the effective radii retrieved using two different wavelengths of MODIS tend to trace the microphysical change of reflectivity profiles in a different way because of the difference in the layer depth that characterizes these two effective radii. The reflectivity profiles as a function of optical depth are also interpreted in terms of drop collection processes based on the continuous collection model. The slope of the reflectivity change with optical depth provides a gross measure of the collection efficiency factor. The systematic changes of reflectivity profiles with MODIS-derived particle sizes are then interpreted as demonstrating a strong dependency of the collection efficiency on particle size. These results provide a quantitative insight into the drop collection process of warm clouds in the real atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call