Abstract

This paper presents a statistical model for stationary ergodic point processes, estimated from a single realization observed in a square window. With existing approaches in stochastic geometry, it is very difficult to model processes with complex geometries formed by a large number of particles. Inspired by recent works on gradient descent algorithms for sampling maximum-entropy models, we describe a model that allows for fast sampling of new configurations reproducing the statistics of the given observation. Starting from an initial random configuration, its particles are moved according to the gradient of an energy, in order to match a set of prescribed moments (functionals). Our moments are defined via a phase harmonic operator on the wavelet transform of point patterns. They allow one to capture multi-scale interactions between the particles, while controlling explicitly the number of moments by the scales of the structures to model. We present numerical experiments on point processes with various geometric structures, and assess the quality of the model by spectral and topological data analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.