Abstract
In this paper, we propose a technique for generating particles from user-specified transfer function for an effective point-based volume rendering. In general, a volume rendering technique utilizes an illumination model in which the 3D scalar field is characterized as a varying density emitter with a single level of scattering. This model is related to a particle system in which the particles are sufficiently small and of low albedo. A conventional volume rendering technique models the density of particles, not the particles themselves [1]. The density is defined by specifying a transfer function from a scalar data value to an opacity data value. Thus, a given scalar field is described as a continuous semitransparent gel and the accumulating order is important. This results in a considerable computational overhead. On the other hand, our rendering technique represents the 3D scalar fields as a set of particles. The particle density is derived from a userspecified transfer function, and describes the probability that a particle is present at the point. Since the particles can be considered as fully opaque, no alpha blending but only depth comparison is required during the rendering calculation, which is advantageous in the distributed processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.