Abstract

ABSTRACT Growing planets interact with their surrounding protoplanetary disc, generating feedback effects that may promote or suppress nearby planet formation. We study how spiral waves launched by planets affect the motion and collisional evolution of particles in the disc. To this end, we perform local 2D hydrodynamical simulations that include a gap-opening planet and integrate particle trajectories within the gas field. Our results show that particle trajectories bend at the location of the spiral wave, and collisions occurring within the spiral exhibit significantly enhanced collisional velocities compared to elsewhere. To quantify this effect, we ran simulations with varying planetary masses and particle sizes. The resulting collisional velocities within the spiral far exceed the typical fragmentation threshold, even for collisions between particles of relatively similar sizes and for planetary masses below the pebble isolation mass. If collisions within the spiral are frequent, this effect could lead to progressively smaller particle sizes as the radial distance from the planet decreases, impacting processes such as gap filtering, pebble accretion, and planetesimal formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.