Abstract

Particle formation and coagulation in the seeded semibatch emulsion polymerization of butyl acrylate were studied under monomer-starved conditions. To investigate the importance of the kinetics of the water phase in the nucleation process, the monomer feed rate was used as a variable to alter the monomer concentration in the aqueous phase. The emulsifier concentration in the feed was employed to alter the particle stability. Particle formation and coagulation were discussed in terms of critical surface coverage ratios. Particle coagulation occurred if the particle surface coverage dropped below θcr1 = 0.25 ± 0.05. The secondary nucleation occurred above a critical surface coverage of θcr2 = 0.55 ± 0.05. The number of particles remained approximately constant if the particle surface coverage was within θcr1 = 0.25 < θ < θcr2 = 0.55. This surface coverage band is equivalent to the surface tension band of 42.50 ± 5.0 dyne/cm that is required to avoid particle formation and coagulation in the course of polymerization. The kinetics of the water phase was shown to play an important role during homogeneous and micellar nucleations. For any fixed emulsifier concentration in the feed and above θcr2, the number of secondary particles increased with monomer concentration in the aqueous phase. Moreover, the presence of micelles in the reaction vessel is not the only perquisite for micellar nucleation to occur, a sufficient amount of monomer should be present in the aqueous phase to enhance the radical capture by partially monomer-swollen micelles. The rate of polymerization increased with the surfactant concentration in the aqueous phase. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3612–3630, 2000

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.