Abstract

The effect of feed molar ratio of N-isopropylacrylamide (NIPAM) to poly(ethylene oxide) (PEO) on the particle formation of poly(N-isopropylacrylamide) (PNIPAM) and PEO block copolymers (PNIPAM-b-PEO) and their aggregation-collapse behavior have been studied in aqueous solutions. It is found that in the presence of cross-linking agent N,N'-methylenebisacryla-mide (BIS), different morphologies of PNIPAM-b-PEO copolymers can be obtained, including a grafting-like structure, a hemispherical core-shell structure and a well-defined core-shell nanoparticle, as the feed molar amount of NIPAM in the copolymerization is increased. The increase in temperature causes the self-aggregation of grafting-like copolymers and hemispherical particles due to the hydrophobic interaction between locally unshielded PNIPAM blocks prior to the conformational transition of PNIPAM. When the feed molar ratio of NIPAM to PEO exceeds a certain value, a well-defined core-shell nanoparticle can be produced during the copolymerization. At low concentrations, PNIPAM cores of single core-shell nanoparticles can undergo the conformational transition without aggregation. The increase in the concentration of the well-defined core-shell nanoparticles, however, results in a week aggregation at temperatures lower than the theta-temperature of pure PNIPAM due to the association of methyl groups at the periphery of PEO shells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.