Abstract
Electric cable (or rope) shovels are critical equipment in the surface mining industry. An improved understanding of the factors which affect the flow of broken material into the dipper during loading can help to evaluate the performance of the excavator, define the criteria for equipment selection and develop ways to mitigate equipment damage caused by broken particles. In this paper, the mechanism of granular material flow was investigated through a series of laboratory tests by moving 1:32 and 1:20 (cube root scale) models of a 44m3 dipper through a test bin filled with angular crushed limestone. It was found that neither dipper angle nor hoist speed has significant influence on the general flow pattern. It was also found that the general flow mechanism is independent on the size of the dipper. Quantitatively, it was determined that hoist speed and pitch angle affect the productivity of the machine with lower pitch angle resulting in higher payload, and faster hoist speed results in shorter dig time. While both lower pitch angle and faster hoist speeds also produce a higher rate of energy consumption, overall both contribute to improved machine productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.