Abstract

Many research results show that under any stress state the rock mass is most likely to crack, swell, bifurcate, and infiltrate from the fissure tip, resulting in rock engineering instability and failure. In order to study the influence of double fissure angles on rock mechanical characteristics, five rock numerical models with different fissure angles were established by numerical simulation software. Uniaxial compression tests were carried out, and the variation characteristics of rock stress, strain, failure, microcrack, and acoustic emission (AE) were recorded. The test results show that: With increases in the fissure angles, the elastic modulus of rock increased, while the peak strength decreased first and then increased. The number of microcracks in rock was greater at 15° and 75° than at other angles. The microcracks in rock were mainly tensile cracks, and relatively few were shear cracks. The angles of microcracks were mostly concentrated between 0 and 180°, most of which were between 60 and 110°. The failure of rock was relatively light when the fissure angle was15° or 75°, but it produced more and smaller fragments, and the failure was the most serious when the fissure angle was 30°. The angles of the fissures affected the maximum number of AE events, the strain values for the initial AE event, and the maximal AE event. This research can provide some reference for disasters caused by rocks with pre-existing fissures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.