Abstract
This chapter proposes an auxiliary particle filter algorithm for inference in regime switching stochastic volatility models in which the regime state is governed by a first-order Markov chain. It proposes an ongoing updated Dirichlet distribution to estimate the transition probabilities of the Markov chain in the auxiliary particle filter. A simulation-based algorithm is presented for the method that demonstrates the ability to estimate a class of models in which the probability that the system state transits from one regime to a different regime is relatively high. The methodology is implemented in order to analyze a real-time series, namely, the foreign exchange rate between the Australian dollar and the South Korean won.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.