Abstract
This paper introduces a new algorithm where particle filtering techniques and set-membership theory are blended together in one only framework. The idea is to build a recursive filter where, at every step, an approximation of the probability density of the states given the latest observations is provided together with the set of all the possible states consistent with the process and observation models. The results obtained confirm that the advantages furnished by particle filtering and set-membership techniques add up together to obtain more accurate estimates
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.