Abstract

This paper presents the implementation of a particle-filtering-based prognostic framework that allows estimating the state of health (SOH) and predicting the remaining useful life (RUL) of energy storage devices, and more specifically lithium-ion batteries, while simultaneously detecting and isolating the effect of self-recharge phenomena within the life-cycle model. The proposed scheme and the statistical characterization of capacity regeneration phenomena are validated through experimental data from an accelerated battery degradation test and a set of ad hoc performance measures to quantify the precision and accuracy of the RUL estimates. In addition, a simplified degradation model is presented to analyze and compare the performance of the proposed approach in the case where the optimal solution (in the mean-square-error sense) can be found analytically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.