Abstract

Traditional acoustic source localization algorithms attempt to find the current location of the acoustic source using data collected at an array of sensors at the current time only. In the presence of strong multipath, these traditional algorithms often erroneously locate a multipath reflection rather than the true source location. A recently proposed approach that appears promising in overcoming this drawback of traditional algorithms, is a state-space approach using particle filtering. In this paper we formulate a general framework for tracking an acoustic source using particle filters. We discuss four specific algorithms that fit within this framework, and demonstrate their performance using both simulated reverberant data and data recorded in a moderately reverberant office room (with a measured reverberation time of 0.39 s). The results indicate that the proposed family of algorithms are able to accurately track a moving source in a moderately reverberant room.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.