Abstract
This paper proposes a particle filter approach for SLAM(Simultaneous Localization and Mapping) of a mobile robot. The SLAM denotes estimation of both the robot location and map while the robot navigates in an unknown environment without map. The proposed method estimates robot location simultaneously with the locations of the ultrasonic beacons which constitute landmarks for navigation. The particle filter method represents the locations of the robot and landmarks in probabilistic manner by the distribution of particles. The method takes care of the uncertainty of the landmarks' location as well as that of the robot motion. Therefore, the locations of the landmarks are updated including uncertainty at every sampling time. Performance of the proposed method is verified through simulation and experiments. The method yields practically useful mapping information even if the range data from the landmarks include random noise. Also, it provides more accurate and robust estimation of the robot location than the usual least squares methods or dead-reckoning method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of the Korea institute of electronic communication sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.