Abstract

In the process of composing a double-differenced positioning model, it is difficult to separate different frequency signals between code division multiple access (CDMA) systems, the single-difference ambiguity of the pivot satellite and phase differential inter-system biases (PDISBs). Hence it is difficult to calibrate in advance the bias between systems in order to build an inter-system model which only needs one pivot satellite. Based on analysis of the stability of PDISB parameters for non-overlapping frequency CDMA systems, this study adopts a particle filter to estimate the fractional part of the PDISBs (F-PDISBs) between the systems and proposes a particle filter-based inter-system positioning model. Results show that the F-PDISBs and code DISBs for the baselines with the same receiver types and some with different receiver types are rather stable over time and for these baselines it is feasible to use a particle filter to estimate the F-PDISB parameters in the initial stage. Having attained the F-PDISBs, the inter-system model can be constructed to improve positioning accuracy in complex operational environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call