Abstract
This study proposes a novel approach for a vision-based navigation problem using semantically segmented aerial images generated by a convolutional neural network. Vision-based navigation provides a position solution by matching an aerial image to a georeferenced database, and it has been increasingly studied for global navigation satellite system–denied environments. Aerial images include a vast amount of information that infers the position where they are located. However, it also includes features that disturb the estimation accuracy. The progress of convolutional neural network may provide a promising solution for extracting only helpful features for this purpose. Therefore, segmented images are modeled as a Gaussian mixture model, and the distance for a quantitative discrepancy between two images is established. This allows us to compare the two images quickly with improved accuracy. In addition, a framework of a particle filter is applied to estimate the position using an inertial navigation system. It employs the distance as a measurement, and the particles tend to converge to the true position. Flight test experiments were conducted to verify that the proposed approach achieved distance error of less than 10 m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.