Abstract

Particle filter (PF) can solve the problem of state estimation under strong non-linear non-Gaussian noise condition with respect to traditional Kalman filter (KF) and those improved KFs such as extended KF (EKF) and unscented KF (UKF). However, problems such as particle depletion and particle degradation affect the performance of PF. Optimizing the particle set to high likelihood region with intelligent optimization algorithm results in a more reasonable distribution of the sampling particles and more accurate state estimation. In this paper, a novel bird swarm algorithm based PF (BSAPF) is presented. Firstly, different behavior models are established by emulating the predation, flight, vigilance and follower behavior of the birds. Then, the observation information is introduced into the optimization process of the proposal distribution with the design of fitness function. In order to prevent particles from getting premature (being stuck into local optimum) and increase the diversity of particles, Levy flight is designed to increase the randomness of particle’s movement. Finally, the proposed algorithm is applied to estimate the speed of the train under the condition that the measurement noise of the wheel sensor is non-Gaussian distribution. Simulation study and experimental results both show that BSAPF is more accurate and has more effective particle number as compared with PF and UKF, demonstrating the promising performance of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.